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J. Phys. A: Math. Gen. 23 (1990) L517-L520. Printed in the U K  

LETTER TO THE EDITOR 

Merons and instantons as products of self-interaction of the 
Dirac-Gursey spinor field 

W I Fushchich and W M Shtelen 
Institute of Mathematics, Repin Street 3, Kiev 4, USSR 

Received 26 June 1989 

Abstract. In this letter we show that the most physically interesting solutions of the SU(2) 
Yang-Mills equations, the well known meron and instanton solutions (and some others), 
are generated by corresponding solutions of nonlinear Dirac-Giirsey spinor equations. 

The idea of describing particles (fields) of spin 0, 1, +, 2, .  . . by means of a field of 
spin 1 /2  was put forward by Louis de Broglie in the 1930s. Later, in the 1950s it was 
developed by Heisenberg and Pauli in their unified field theory. Here we consider 
another realisation of this idea based on the possibility of constructing from a spinor 
field +, which satisfies some given equation, different bispinor densities, say scalar 
U = (L+, vector A,, = Gyp+, and so on. The fruitfulness of such an approach is demon- 
strated by examples of meron and instanton solutions of SU(2) Yang-Mills ( Y M )  

equations. We hope that it is not simply a mathematical trick but possibly reveals 
some important intrinsic features of merons and instantons. 

Y,, - a,a,Y, + e [  (ayYy) x Y,, - 2(a, Y,, ) x Y, + (a,, U,) x Y,] + e* Y ,  x ( Y ,  x Y,, ) = o ( 1) 

where Y ,  = Yy(x) = { Y!,, Y t ,  Y:} is the Y M  potential, p, v =m, x E R(4) (Euclidean 
space), can be constructed by means of a scalar field Q which satisfies the nonlinear 
wave equation 

It is well known that a vast class of solutions of SU(2) Y M  equations 

O Q + A , Q ~  = O  (2) 

( A ,  is an arbitrary constant). In order to do this one has to use the ’t Hooft-Corrigan- 
Fairlie-Wilczek ansatz (see, for example, [ 11) 

eYg = Fa, In Q 

eY7 = ( ~ ~ , , a ,  * sj,a,) In Q. 

a = 1 , 2 , 3  
(3) 

The following solutions of equation (2) are of special interest 

(4) 
2 - 1 / 2  Q = ( A i x )  

0305-~70/90/1OO517 +O4%03.50 @ 1990 1OP Publishing Ltd L517 



L518 Letter to the Editor 

where ( x  - U)’= (x, - u,)(x, - U , )  and U”, b,, a are arbitrary constants, because they 
give rise to the one-meron [2] 

to the two-meron [2] 

and to the instanton [3] 

solutions of YM equations ( l ) ,  respectively. We shall show that scalar fields (4)-(6) 
can be constructed in turn from the spinor field 9 which satisfies the Dirac-Gursey 
equation 

[i yd + A (&b)”’]+ = 0 (10) 

where y y  are 4 x 4  Dirac matrices, J/ = +(x) is a four-component complex function 
(column), $ = ++yo and A is an arbitrary constant. Equation (10) is conformally 
invariant as well as (1) and (2), but it has conformal degree 3/2 while the conformal 
degree of the scalar field from (2) is 1. (Detailed analysis of conformal symmetry is 
given in [4] where, in particular, it was pointed out that the conformal degree is an 
important intrinsic characteristic of a field.) So, to construct the scalar field cp from 
the spinor field 4 properly, we should not simply put cp = $+ but 

cp = ($+)1’3. (11)  

Further, we consider the following two solutions of equation (10) obtained by Kortel 
[5] and Merwe [6] 

and 

where ,y is an’ arbitrary constant spinor and one can choose, without loss of generality, 
Xx = 1; a is an arbitrary constant. These solutions were obtained by means of the 
Heisenberg ansatz [7] 

CLb) = [ f (w)+irxg(w)Ix (14) 
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where f and g are real scalar functions, w =Jx' and ,y is a constant spinor. One can 
make sure that the substitution of (12) and (13) into (11) gives rise to (4) and (6) 
provided A = $& and A = a respectively. It should be noted that, generally speak- 
ing, scalar field ( l l ) ,  constructed from spinor field (14) and satisfying equation ( lo) ,  
does not satisfy equation (2), but we do not know the explicit form of such solutions 
of equation (10). 

Further we note that solution ( 5 )  of equation (2) can be obtained as a result of the 
following procedure of group multiplication of solutions. Applying to (4) the formulae 
of generating solutions by conformal transformations [4] 

where cpll(x) means a new solution, q l (x )  means an old one, and c, are arbitrary 
constants, then by translational transformations 

we get, letting 

b, - a, c, = - 
( a  - b)* 

the solution ( 5 )  of equation (2). For the case of Dirac spinor field 4, formulae 
analogous to those given in ( 1 9 ,  (16) are [4,8] 

and 

4 I I ( X )  = I L d X ' )  x; = x, - a,. (19) 

Having applied formulae (18), (19) and (17) to (12) we get a new solution of equation 
(10): 

ccI = A  ( ?)'I2( ( a  - b)' 
4 A (x-a)*(x-b) '  

(YX - YQ)(Yb - Ya) ( a  - b) ( (a -b) '  ) ( (x  - b):) "*Ix " = 

(20) 

and it is the solution which gives rise (by means of (11)) to ( 5 )  when A =$&. 
So, we have shown that one-meron (7), two-meron (8) and instanton (9) solutions 

of YM equation (1) are actually generated by the spinor fields (12), (20) and (13), 
respectively, which satisfy the Dirac-Gursey equation (10). 

The procedure for obtaining a two-meron solution from the one-meron solution 
described above can be applied to instanton solutions (6) and (13). So, in this case, 
making use of formulae (19, (16), (18) and (19), choosing c, as in (17) and a' = ( a  - b)' 
we get from (6) and (13) a new solution of equation (2) 
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and a new solution of the Dirac-Gursey equation (10) 

( 33'2( 1 
[(x - a ) ' + ( x -  b)']' *(x) = 

The corresponding solution of YM equations (1) has the form 

( x  - a) i  + ( x  - b ) i  
eYb = *2 

( X  - a ) ' + ( x  - b)' 

(x, - a) ,  + ( x  - b ) ,  F26, ( x  - a),+ ( X  - b)o 
(x  - a)'+ ( x  - b)' 

e y !  = - 2 ~ .  
"" (x - a ) * + ( x  - b)' 

/f,y=l. (22) 

(23) 

This new solution of YM equations is also generated by spinor field 4 satisfying the 
Dirac-Gursey equation (10); now it is given by (22), according to ( 1 1 )  ( A  =a) 
and (3 ) .  

In conclusion we would like to note that all solutions of the Dirac-Gursey equation 
(10) considered above (see (12), (13),  (20), (22)) are non-analytic in the coupling 
constant A. A great number of solutions of this equation which are analytic in A are 
obtained in [4,8]. These solutions also generate scalar fields cp which satisfy equation 
(2) (and therefore give rise to solutions of YM equations), but in these cases we lose 
the connection between coupling constants A and A ,  and, generally speaking, cp = ( $I+/I)~, 
k # 113. 

It will also be noted that solutions of YM equations can be looked for in the form 
Yl=@'yp$" (no sum over a = 1,2,3),  where satisfy some nonlinear spinor 
equation. In the same spirit solutions of other field equations can be constructed. 

We would like to express our gratitude to the referees for their useful suggestions. 
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